Anomalous triple and quartic gauge couplings in the electroweak theory

Artur Semushin

NRNU MEPhl, AANL (YerPhl)

15.11.2023

Artur Semushin	(NRNU MEPhI, AANL ((YerPhI))
----------------	---------------------	----------	---

Main studies

- 1. ATLAS analysis:
- nTGC (neutral triple gauge couplings) interpretation of $Z(\nu\bar{\nu})\gamma$ inclusive analysis;
- contribution to the full Run II aQGC (anomalous quartic gauge couplings) combination from $Z(\nu\bar{\nu})\gamma jj$ analysis.
- 2. Phenomenological studies of the anomalous couplings:
- search for new sensitive variables;
- search for other ways to increase the sensitivity;
- reinterpretation of the limits.
- 3. TRT studies (qualification task): calibration of the likelihood particle identification.

Interpretation of the ATLAS $Z(\nu\bar{\nu})\gamma$ inclusive analysis

Twiki page

- Six operators are currently studied.
- UFO (universal feynrules output) model containing all six operators was created and uploaded to the ATLAS database (JIRA ticket). Previous UFO models did not contain all the operators and did not allow one to generate interference between two operators directly.
- EFT decomposed samples were requested (JIRA ticket).
- Preliminary results are below. All the limits will be the world strongest.

Coef.	$Z\gamma$ -only EFT	$Z\gamma + W\gamma$ EFT	Published limits
C_{G+}/Λ^4	[-6.24; 6.27]×10 ⁻³	[-5.57; 5.57]×10 ⁻³	-
C_{G-}/Λ^4	[-0.338; 0.352]	[-0.338; 0.352]	-
$C_{ ilde{B}W}/\Lambda^4$	[-0.372; 0.378]	[-0.324; 0.325]	[-1.3; 1.3]
C_{BW}/Λ^4	[-0.698; 0.674]	[-0.609; 0.597]	[-0.74; 0.74]
C_{BB}/Λ^4	[-0.279; 0.275]	[-0.279; 0.275]	[-0.28; 0.27]
C_{WW}/Λ^4	[-1.40; 1.37]	[-1.40; 1.37]	[-2.7; 2.7]

Artur Semushin (NRNU MEPhI, AANL (YerPhI))

ATLAS full Run II aQGC combination

Twiki page

Published paper from VBS (vector boson scattering) $Z(\nu\bar{\nu})\gamma jj$ analysis: 2209.07906.

• Previously, in $Z(\nu\bar{\nu})\gamma jj$ VBS analysis, the limits on 7 operator coefficients were set. 5 of them are the world strongest ones. Now they are being combined with the limits from other channels.

Coefficient	Observed limit [TeV ⁻⁴]	Expected limit [TeV ⁻⁴]		3
f_{T0}/Λ^4	$[-9.4, 8.4] \times 10^{-2}$	$[-1.3, 1.2] \times 10^{-1}$	0 1.5 √s=13 TeV, 139 fb ⁻¹	
f_{T5}/Λ^4	$[-8.8, 9.9] \times 10^{-2}$	$[-1.2, 1.3] \times 10^{-1}$	0.5	1111
f_{T8}/Λ^4	$[-5.9, 5.9] \times 10^{-2}$	$[-8.1, 8.0] \times 10^{-2}$	0	
f_{T9}/Λ^4	$[-1.3, 1.3] \times 10^{-1}$	$[-1.7, 1.7] \times 10^{-1}$	-0.5	111
f_{M0}/Λ^4	[-4.6, 4.6]	[-6.2, 6.2]	_1Expected	
f_{M1}/Λ^4	[-7.7, 7.7]	$[-1.0, 1.0] \times 10^{1}$	-1.5 — Observed — Unitarity bound –	
f_{M2}/Λ^4	[-1.9, 1.9]	[-2.6, 2.6]	$-2\frac{1}{2}$ $\frac{2}{3}$ $\frac{3}{4}$ $\frac{5}{5}$ (T2)	

Search for new sensitive variables

The most prospective way for setting the limits is to base it on at least to variables: the first one is sensitive to quadratic term and the second one is sensitive to interference term.

Quadratic term: sensitive variables are correlated with bosonic $\sqrt{\hat{s}}$. Examples: $E_{\rm T}^{\gamma}$ (for $Z(\nu\bar{\nu})\gamma$ analysis), $p_{\rm T}^{\ell\ell}$ (for $ZZ \rightarrow \ell\ell\nu\nu$ analysis), etc. Interference term: sensitive variables are not trivial. Examples: requirement of 1 jet with high $p_{\rm T}$ for reducing the suppression of interference (W^+W^- analysis), difficult angular variables ($W\gamma$ analysis, usually leptons or both bosons reconstructed are needed), matrix-based optimal observables (Higgs WG), ML (currently do not widely used for EFT).

We try to probe optimal observables and simple variables, including CP-sensitive variables.

• Study for the case of nTGC in $ZZ \rightarrow \nu \nu \ell \ell$ channel was presented at DSPIN-2023 (indico). Paper to be published in Physics of Atomic Nuclei is in progress.

Coefficient	No corrections	Main correction	Improvement
C_{G+}/Λ^4	[-0.124; 0.123]	[-0.041; 0.041]	67.1%
C_{G-}/Λ^4	[-0.412; 0.415]	[-0.399; 0.403]	3.1%
$C_{ ilde{B}W}/\Lambda^4$	[-0.663; 0.671]	[-0.626; 0.639]	5.2%
C_{BW}/Λ^4	[-1.53; 1.51]	[-1.42; 1.42]	6.4%
C_{BB}/Λ^4	[-0.815; 0.819]	[-0.815; 0.819]	0
C_{WW}/Λ^4	[-1.27; 1.25]	[-1.05; 1.04]	17.4%

6/18

• Study for the case of aQGC in $ZZjj \rightarrow \nu\nu\ell\ell jj$ channel was presented at BSM-2023 (indico). Paper to be published in Letters in High Energy Physics is in progress.

Coefficient	Signal-only EFT	Sig+bkg EFT	Improvement
$f_{ m T0}/\Lambda^4$	[-0.240; 0.227]	[-0.216; 0.207]	9.5%
$f_{ m T1}/\Lambda^4$	[-0.312; 0.311]	[-0.211; 0.218]	31.1%
$f_{\rm T5}/\Lambda^4$	[-0.596; 0.573]	[-0.526; 0.508]	11.6%
$f_{\rm M4}/\Lambda^4$	[-4.88; 4.87]	[-2.62; 2.62]	46.3%
$f_{\rm M7}/\Lambda^4$	[-8.64; 8.65]	[-6.00; 5.99]	30.7%

7/18

Reinterpretation of the limits

General way for re-interpretation: to write a Lagrangian with new particles interacting with the bosons, to integrate them out from the partition function. The result will be the effective Lagrangian, and it can be matched with the operators.

It was done for aQGC in 1908.09845 (basing on similar but another operators basis).

	scalar	fermion	vector			
$c_{1}^{B^{4}}$	$\frac{7}{32}g_{1}^{4}Q^{4}$	$\frac{1}{2}g_{1}^{4}Q^{4}$	$\frac{261}{32}g_1^4Q^4$			
$c_{2}^{B^{4}}$	$\frac{1}{32}g_{1}^{4}Q^{4}$	$\frac{7}{8}g_{1}^{4}Q^{4}$	$\frac{243}{32}g_1^4Q^4$			
$c_{1}^{W^{4}}$	$g_2^4 \left[rac{7}{32} \Lambda({f R}_2) + rac{1}{48} I_2({f R}_2) ight]$	$g_2^4 \left[\frac{1}{2} \Lambda(\mathbf{R}_2) + \frac{1}{48} I_2(\mathbf{R}_2) \right]$	$g_2^4 \left[\frac{261}{32} \Lambda(\mathbf{R}_2) - \frac{3}{16} I_2(\mathbf{R}_2) \right]$			Example: multicharged particles
$c_{2}^{W^{4}}$	$g_2^4 \left[\frac{1}{32} \Lambda(\mathbf{R}_2) + \frac{1}{336} I_2(\mathbf{R}_2) \right]$	$g_2^4 \left[\frac{7}{8} \Lambda(\mathbf{R}_2) + \frac{19}{336} I_2(\mathbf{R}_2) \right]$	$g_2^4 \left[\frac{243}{32} \Lambda(\mathbf{R}_2) - \frac{27}{112} I_2(\mathbf{R}_2) \right]$	B/W/G	B/W/G	Example. multicharged particles,
$c_{3}^{W^{4}}$	$g_2^4 \left[rac{7}{16} \Lambda({f R}_2) - rac{1}{48} I_2({f R}_2) ight]$	$g_2^4 \left[\Lambda(\mathbf{R}_2) - rac{1}{48} I_2(\mathbf{R}_2) ight]$	$g_2^4 \left[\frac{261}{16} \Lambda(\mathbf{R}_2) + \frac{3}{16} I_2(\mathbf{R}_2) \right]$	· `~	ن نی	reinterpretation of the limit
$c_{4}^{W^{4}}$	$g_2^4 \left[\frac{1}{16} \Lambda(\mathbf{R}_2) - \frac{1}{336} I_2(\mathbf{R}_2) \right]$	$g_2^4 \left[rac{7}{4} \Lambda({f R}_2) - rac{19}{336} I_2({f R}_2) ight]$	$g_2^4 \left[\frac{243}{16} \Lambda(\mathbf{R}_2) + \frac{27}{112} I_2(\mathbf{R}_2) \right]$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Φ $-$	
$c_{1}^{G^{4}}$	$g_3^4 \left[\frac{7}{32} \Lambda(\mathbf{R}_3) + \frac{1}{96} I_2(\mathbf{R}_3) \right]$	$g_3^4 \left[\frac{1}{2} \Lambda(\mathbf{R}_3) + \frac{1}{96} I_2(\mathbf{R}_3) \right]$	$g_3^4 \left[\frac{261}{32} \Lambda(\mathbf{R}_3) - \frac{3}{32} I_2(\mathbf{R}_3) \right]$	۲ <u>–</u>		$ t_{T8}/\Lambda^4 < 0.06 \text{ IeV}^{-4}$.
$c_2^{G^4}$	$g_3^4 \left[\frac{1}{32} \Lambda(\mathbf{R}_3) + \frac{1}{672} I_2(\mathbf{R}_3) \right]$	$g_3^4 \left[\frac{7}{8} \Lambda(\mathbf{R}_3) + \frac{19}{672} I_2(\mathbf{R}_3) \right]$	$g_3^4 \left[\frac{243}{32} \Lambda(\mathbf{R}_3) - \frac{27}{224} I_2(\mathbf{R}_3) \right]$			
$c_3^{G^4}$	$g_3^4 \left[\frac{7}{16} \Lambda(\mathbf{R}_3) - \frac{1}{48} I_2(\mathbf{R}_3) \right]$	$g_3^4 \left[\Lambda(\mathbf{R}_3) - rac{1}{48} I_2(\mathbf{R}_3) ight]$	$g_3^4 \left[\frac{261}{16} \Lambda(\mathbf{R}_3) + \frac{3}{16} I_2(\mathbf{R}_3) \right]$			Scalar: $M > 0.3 \Omega $ TeV
$c_4^{G^4}$	$g_3^4 \left[\frac{1}{16} \Lambda(\mathbf{R}_3) - \frac{1}{336} I_2(\mathbf{R}_3) \right]$	$g_3^4 \left[rac{7}{4} \Lambda({f R}_3) - rac{19}{336} I_2({f R}_3) ight]$	$g_3^4 \left[\frac{243}{16} \Lambda(\mathbf{R}_3) + \frac{27}{112} I_2(\mathbf{R}_3) \right]$	_ل_	<u>_</u>	Scalar. $W > 0.5 Q $ rev
$c_5^{G^4}$	$\frac{1}{32}g_3^4I_2(\mathbf{R}_3)$	$\frac{1}{32}g_3^4I_2(\mathbf{R}_3)$	$-\frac{9}{32}g_3^4I_2(\mathbf{R}_3)$		~ <u>~</u>	Fermion: $M > 0.37 Q $ TeV
$c_{6}^{G^{4}}$	$\frac{1}{224}g_3^4I_2(\mathbf{R}_3)$	$\frac{19}{224}g_3^4I_2(\mathbf{R}_3)$	$-\frac{81}{224}g_3^4I_2(\mathbf{R}_3)$	R/W/C		
$c_1^{B^2W^2}$	$\frac{7}{16}g_1^2g_2^2Q^2I_2(\mathbf{R}_2)$	$g_1^2 g_2^2 Q^2 I_2(\mathbf{R}_2)$	$\frac{261}{16}g_1^2g_2^2Q^2I_2(\mathbf{R}_2)$	D/W/G	D/W/G	Vector: $M > 0.74 Q $ leV
$c_2^{B^2W^2}$	$\frac{1}{16}g_1^2g_2^2Q^2I_2(\mathbf{R}_2)$	$\frac{7}{4}g_1^2g_2^2Q^2I_2(\mathbf{R}_2)$	$\frac{243}{16}g_1^2g_2^2Q^2I_2(\mathbf{R}_2)$			
$c_3^{B^2W^2}$	$\frac{7}{8}g_1^2g_2^2Q^2I_2(\mathbf{R}_2)$	$2g_1^2g_2^2Q^2I_2(\mathbf{R}_2)$	$\frac{261}{8}g_1^2g_2^2Q^2I_2(\mathbf{R}_2)$			
$c_4^{B^2W^2}$	$\frac{1}{8}g_1^2g_2^2Q^2I_2(\mathbf{R}_2)$	$\frac{7}{2}g_1^2g_2^2Q^2I_2(\mathbf{R}_2)$	$\frac{243}{8}g_1^2g_2^2Q^2I_2(\mathbf{R}_2)$			
$c_1^{B^2G^2}$	$\frac{7}{16}g_1^2g_3^2Q^2I_2(\mathbf{R}_3)$	$g_1^2 g_3^2 Q^2 I_2(\mathbf{R}_3)$	$\frac{261}{16}g_1^2g_3^2Q^2I_2(\mathbf{R}_3)$			
						(日)((日))(日)((日))(日)(日)

TRT LLH PID calibration

• It is planned to finish the qualification task in winter-spring. Then, work on this topic will be continued.

9/18

BACK-UP

・ロト ・御 ト ・ヨト ・ヨト

э.

EFT and VF formalisms

EFT — parameterization of the Lagrangian with the operators of higher dimensions. The operators are constructed so that the gauge symmetries are respected. Usually each operator describes different vertices.

$$\mathcal{L} = \mathcal{L}_{\mathsf{SM}} + \mathcal{L}^{(5)} + \mathcal{L}^{(6)} + \mathcal{L}^{(7)} + \mathcal{L}^{(8)} + \dots, \quad \mathcal{L}^{(d)} = \sum_{i} \frac{C_{i}^{(d)}}{\Lambda^{d-4}} \mathcal{O}_{i}^{(d)}.$$

VF approach — parameterization of the vertex function or, equivalently, of the Lagrangian. Parameterization structures (operators) are not required to respect the gauge symmetries. Parameterization is made separately for each specific vertex.

Example for general three-boson vertex
$$V_1 V_2 V_3$$
:

$$\Gamma_{V_1 V_2 V_3}^{\alpha \beta \mu} = \Gamma_{V_1 V_2 V_3, SM}^{\alpha \beta \mu} + g_{V_1 V_2 V_3} \sum_i h_i \Gamma_{V_1 V_2 V_3, i}^{\alpha \beta \mu}$$

$$\mathcal{L} = \mathcal{L}_{SM} + g_{V_1 V_2 V_3} \sum_i h_i \mathcal{O}_i$$

$$\Gamma_{V_1 V_2 V_4, i}^{\alpha \beta \mu}$$
is the Feynman rule for the vertex described by

 $\Gamma_{V_1V_2V_3,i}^{\alpha\beta\mu}$ is the Feynman rule for the vertex described by \mathcal{O}_i . Simplified explanation: it is \mathcal{O}_i in the momentum space.

Artur Semushin (NRNU MEPhI, AANL (YerPhI))

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

Anomalous quartic gauge couplings (aQGCs)

AQGCs are studied only in EFT formalism.

Operators are dimension-eight, since dimension-six operators contain triple gauge couplings counterpart, and therefore are not valid for studying genuine aQGCs.

$$\mathcal{O}_{\mathbf{S0}} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D_{\nu} \Phi \right] \left[\left(D^{\mu} \Phi \right)^{\dagger} D^{\nu} \Phi \right],$$
$$\mathcal{O}_{\mathbf{S1}} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D^{\mu} \Phi \right] \left[\left(D_{\nu} \Phi \right)^{\dagger} D^{\nu} \Phi \right].$$

$$\begin{split} \mathcal{O}_{\mathbf{M0}} &= \mathrm{Tr} \, \left[\hat{W}_{\mu\nu} \, \hat{W}^{\mu\nu} \right] \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\beta} \Phi \right], \\ \mathcal{O}_{\mathbf{M1}} &= \mathrm{Tr} \, \left[\hat{W}_{\mu\nu} \, \hat{W}^{\nu\beta} \right] \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\mu} \Phi \right], \\ \mathcal{O}_{\mathbf{M2}} &= \left[B_{\mu\nu} B^{\mu\nu} \right] \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\beta} \Phi \right], \\ \mathcal{O}_{\mathbf{M3}} &= \left[B_{\mu\nu} B^{\nu\beta} \right] \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\mu} \Phi \right], \\ \mathcal{O}_{\mathbf{M4}} &= \left[\left(D_{\mu} \Phi \right)^{\dagger} \, \hat{W}_{\beta\nu} D^{\mu} \Phi \right] B^{\beta\nu}, \\ \mathcal{O}_{\mathbf{M5}} &= \left[\left(D_{\mu} \Phi \right)^{\dagger} \, \hat{W}_{\beta\nu} D^{\nu} \Phi \right] B^{\beta\mu} + \mathrm{h.c.}, \\ \mathcal{O}_{\mathbf{M7}} &= \left[\left(D_{\mu} \Phi \right)^{\dagger} \, \hat{W}_{\beta\nu} \, \hat{W}^{\beta\mu} D^{\nu} \Phi \right]. \end{split}$$

Corresponding coefficients: f_{SO}/Λ^4 , f_{S1}/Λ^4 , f_{MO}/Λ^4 , etc. Previously limits on 7 coefficients were set as an interpretation of $Z(\nu\bar{\nu})\gamma jj$ ATLAS Run II analysis.

$$\begin{split} \mathcal{O}_{\mathbf{T0}} &= \mathrm{Tr} \, \left[\hat{W}_{\mu\nu} \, \hat{W}^{\mu\nu} \right] \mathrm{Tr} \, \left[\hat{W}_{\alpha\beta} \, \hat{W}^{\alpha\beta} \right], \\ \mathcal{O}_{\mathbf{T1}} &= \mathrm{Tr} \, \left[\hat{W}_{\alpha\nu} \, \hat{W}^{\mu\beta} \right] \mathrm{Tr} \, \left[\hat{W}_{\mu\beta} \, \hat{W}^{\alpha\nu} \right], \\ \mathcal{O}_{\mathbf{T2}} &= \mathrm{Tr} \, \left[\hat{W}_{\alpha\mu} \, \hat{W}^{\mu\beta} \right] \mathrm{Tr} \, \left[\hat{W}_{\beta\nu} \, \hat{W}^{\nu\alpha} \right], \\ \mathcal{O}_{\mathbf{T3}} &= \mathrm{Tr} \, \left[\hat{W}_{\mu\nu} \, \hat{W}_{\alpha\beta} \right] \mathrm{Tr} \, \left[\hat{W}^{\alpha\nu} \, \hat{W}^{\mu\beta} \right], \\ \mathcal{O}_{\mathbf{T4}} &= \mathrm{Tr} \, \left[\hat{W}_{\mu\nu} \, \hat{W}_{\alpha\beta} \right] \left[B^{\alpha\nu} B^{\mu\beta} \right], \\ \mathcal{O}_{\mathbf{T6}} &= \mathrm{Tr} \, \left[\hat{W}_{\mu\nu} \, \hat{W}^{\mu\beta} \right] \left[B_{\alpha\beta} B^{\alpha\beta} \right], \\ \mathcal{O}_{\mathbf{T6}} &= \mathrm{Tr} \, \left[\hat{W}_{\alpha\mu} \, \hat{W}^{\mu\beta} \right] \left[B_{\beta\nu} B^{\alpha\nu} \right], \\ \mathcal{O}_{\mathbf{T7}} &= \mathrm{Tr} \, \left[\hat{W}_{\alpha\mu} \, \hat{W}^{\mu\beta} \right] \left[B_{\beta\nu} B^{\alpha\nu} \right], \\ \mathcal{O}_{\mathbf{T8}} &= \left[B_{\mu\nu} B^{\mu\nu} \right] \left[B_{\alpha\beta} B^{\alpha\beta} \right], \\ \mathcal{O}_{\mathbf{T9}} &= \left[B_{\alpha\mu} B^{\mu\beta} \right] \left[B_{\beta\nu} B^{\nu\alpha} \right]. \end{split}$$

Artur Semushin (NRNU MEPhI, AANL (YerPhI))

AANL seminar

12/18

Anomalous neutral triple gauge couplings (nTGCs)

NTGCs — triple couplings between Z and γ . They are zero in the SM and studied in EFT and VF formalisms. EFT operators are dimension-eight, since dimension-six operators do not describe nTGCs.

$$\mathcal{O}_{\tilde{B}W} = i\Phi^{\dagger}\tilde{B}_{\mu\nu}\hat{W}^{\mu\rho} \{D_{\rho}, D^{\nu}\}\Phi + \text{h.c.}, \qquad \mathcal{O}_{BW} = i\Phi^{\dagger}B_{\mu\nu}\hat{W}^{\mu\rho} \{D_{\rho}, D^{\nu}\}\Phi + \text{h.c.}, \\ \mathcal{O}_{BB} = i\Phi^{\dagger}B_{\mu\nu}B^{\mu\rho} \{D_{\rho}, D^{\nu}\}\Phi + \text{h.c.}, \qquad \mathcal{O}_{WW} = i\Phi^{\dagger}\hat{W}_{\mu\nu}\hat{W}^{\mu\rho} \{D_{\rho}, D^{\nu}\}\Phi + \text{h.c.}, \\ \mathcal{O}_{G\pm} = \frac{2}{g}\tilde{B}_{\mu\nu}\text{Tr} \left[\hat{W}^{\mu\rho} \left(D_{\rho}D_{\lambda}\hat{W}^{\nu\lambda} \pm D^{\nu}D^{\lambda}\hat{W}^{\lambda\rho}\right)\right]. \\ \text{Coefficients: } C_{BB}/\Lambda^{4}, \ C_{WW}/\Lambda^{4}, \ C_{BW}/\Lambda^{4} \ \text{(CP-violating) and } C_{\tilde{B}W}/\Lambda^{4}, \ C_{G+}/\Lambda^{4}, \ C_{G-}/\Lambda^{4} \ \text{(CP-conserving)}. \\ \text{VF approach:}$$

$$\begin{split} \Gamma_{Z\gamma V^*}^{\alpha\beta\mu(8)}(q_1, q_2, q_3) &= \frac{e(q_3^2 - M_V^2)}{M_Z^2} \left[\left(h_3^V + h_5^V \frac{q_3^2}{M_Z^2} \right) q_{2\nu} \epsilon^{\alpha\beta\mu\nu} + \frac{h_4^V}{M_Z^2} q_2^\alpha q_{3\nu} q_{2\sigma} \epsilon^{\beta\mu\nu\sigma} \right], \\ \mathcal{L} &= \frac{e}{M_Z^2} \left[- \left[h_3^\gamma(\partial_\sigma F^{\sigma\rho}) + h_3^Z(\partial_\sigma Z^{\sigma\rho}) + \frac{h_5^\gamma}{M_Z^2} (\partial^2 \partial_\sigma F^{\rho\sigma}) + \frac{h_5^Z}{M_Z^2} (\partial^2 \partial_\sigma Z^{\rho\sigma}) \right] Z^\alpha \widetilde{F}_{\rho\alpha} \right] \\ &+ \left\{ \frac{h_4^\gamma}{2M_Z^2} \left[\Box \partial^\sigma F^{\rho\alpha} \right] + \frac{h_4^Z}{2M_Z^2} \left[(\Box + M_Z^2) \partial^\sigma Z^{\rho\alpha} \right] \right\} Z_\sigma \widetilde{F}_{\rho\alpha} \right]. \end{split}$$

Coefficients: h_1^V , h_2^V (CP-violating) and h_3^V , h_4^V , h_5^V (CP-conserving).

The last paper 2308.16887 introduces 3 EFT, 2 VF new coefficients. Moreover, new VF formalism for off-shell Z is suggested.

Amplitude decomposition

Parameterization by a single operator: $\mathcal{L} = \mathcal{L}_{SM} + f\mathcal{O}.$

$$\begin{split} & \mathsf{Squared amplitude:} \\ & |\mathcal{A}|^2 = |\mathcal{A}_{\mathsf{SM}} + f\mathcal{A}_{\mathsf{BSM}}|^2 = \\ & = |\mathcal{A}_{\mathsf{SM}}|^2 + f2\mathsf{Re}(\mathcal{A}_{\mathsf{SM}}^{\dagger}\mathcal{A}_{\mathsf{BSM}}) + f^2|\mathcal{A}_{\mathsf{BSM}}|^2 \end{split}$$

UFO models for nTGCs

In order to generate events in MadGraph5 with decomposition, one needs an universal feynrules output (UFO) model.

Previous models:

1. [EFT] The first model created by Celine Degrande. In contains 4 operators and does not support direct generation of cross terms.

2. [EFT] Model created by authors of operators $\mathcal{O}_{G\pm}$. In contains 3 CP-even operators and supports direct generation of cross terms.

3. [VF] Model contains coefficients f_4^V , f_5^V , h_1^V , h_2^V , h_3^V , h_4^V and does not support direct generation of cross terms.

New model for EFT was needed for conveniency (all operators in a single model) and direct generation of any cross term. It was created using FeynRules, validated and agreed with the authors. Moreover, a small incostistency between previous models and operators from the papers was removed. New model was uploaded to the ATLAS model database and is used for the sample request for current $Z(\nu\bar{\nu})\gamma$ and $ZZ \rightarrow \ell\ell\nu\nu$ analyses.

New model for VF was also created and validated. Coefficients h_5^V are added, and direct generation of cross terms became possible. It is planned to use it for the sample request for $Z(\nu\bar{\nu})\gamma$ analysis.

(日) (日) (日) (日) (日) (日)

EFT impact on backgrounds: aQGC

Coefficient	nt Class. lim. [TeV ⁻⁴] Corr. lim. [TeV ⁻⁴]		Improvement
Z(vv)γjj	Integrated lum	inosity of 139 fb ⁻¹	
$\begin{array}{c} f_{\rm TD}/\Lambda^4 \\ f_{\rm T5}/\Lambda^4 \\ f_{\rm M0}/\Lambda^4 \\ f_{\rm M2}/\Lambda^4 \end{array}$	[-0.125; 0.119] [-0.125; 0.132] [-6.04; 6.05] [-2.42; 2.42]	[-0.124; 0.118] [-0.122; 0.128] [-5.57; 5.57] [-2.20; 2.20]	1.3% 2.7% 7.8% 9.1%
Coefficient	Class. lim. [TeV ⁻⁴]	Corr. lim. [TeV ⁻⁴]	Improvement
W(Iv)yjj	Integrated lum	inosity of 139 fb ⁻¹	
f_{TD}/Λ^4 f_{TS}/Λ^4 f_{M0}/Λ^4 f_{M2}/Λ^4	$\begin{array}{l} [-0.286; 0.292] \\ [-0.204; 0.206] \\ [-4.30; 4.28] \\ [-1.54; 1.54] \end{array}$	[-0.274; 0.278] [-0.196; 0.198] [-4.29; 4.27] [-1.53; 1.53]	4.4% 4.1% 0.3% 0.4%
Coefficient	Class. lim. [TeV ⁻⁴]	Corr. lim. [TeV ⁻⁴]	Improvement
Combination	Integrated lum	inosity of 139 fb ⁻¹	
f_{T0}/Λ^4 f_{T5}/Λ^4 f_{M0}/Λ^4 f_{M2}/Λ^4	[-0.120; 0.115] [-0.114; 0.119] [-3.86; 3.85] [-1.43; 1.42]	$\begin{bmatrix} -0.118; 0.113 \\ [-0.110; 0.116] \\ [-3.76; 3.75] \\ [-1.39; 1.39] \end{bmatrix}$	1.6% 3.0% 2.7% 2.6%
Legit 0 4 - Wy reg. class. - 27 reg. class. - 27 reg. class. - 6 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	Wyrag, cor. - D yrag, cor. -	Control 24	tyres.com tyres.com tomb res.com tyres.com

Operators basis: <u>1604.03555</u> Simulation: Madgraph5+Pythia8+Delphes3 Conditions: ATLAS Run II Considered channels: Z(vv)yjj, W(lv)yjj and their combination Selection is based on papers <u>1705.01966</u> and <u>2008.10521</u> Total flat systematic of 10% is applied Limits from Z(vv)yjj are corrected using W(lv)yjj background Limits from W(lv)yjj are corrected using Z(ll)yjj background

Run III integrated luminosity was also considered, Improvement of the limits is similar Improvement for 2D limits: up to 17.2% Paper: 2209.07906

Artur Semushin (NRNU MEPhI, AANL (YerPhI))

э

EFT impact on backgrounds: nTGC

Coefficient	$Z\gamma$ anom. signal	$Z\gamma + W\gamma$ anom. signal	Improvement
C_{G+}/Λ^4	[-5.29; 5.30]×10 ⁻³	[-4.43; 4.45]×10 ⁻³	16.2%
C_{G-}/Λ^4	[-0.272; 0.286]	[-0.272; 0.286]	0
$C_{\bar{R}W}/\Lambda^4$	[-0.306; 0.300]	[-0.244; 0.233]	21.4%
C_{BW}/Λ^4	[-0.549; 0.551]	[-0.447; 0.450]	18.4%
C_{BB}/Λ^4	[-0.223; 0.222]	[-0.223; 0.222]	0
C_{WW}/Λ^4	[-1.11; 1.12]	[-1.11; 1.12]	0
C. C.	77	77 . 14/7	
Coefficient	ZZ anom. signal	ZZ + WZ anom. signal	Improvement
C_{G+}/Λ^4	[-0.124; 0.123]	[-0.041; 0.041]	67.1%
C_{G-}/Λ^4	[-0.412; 0.415]	[-0.399; 0.403]	3.1%
$C_{\bar{B}W}/\Lambda^4$	[-0.663; 0.671]	[-0.626; 0.639]	5.2%
C_{BW}/Λ^4	[-1.53; 1.51]	[-1.42; 1.42]	6.4%
C_{BB}/Λ^4	[-0.815; 0.819]	[-0.815; 0.819]	0
C_{WW}/Λ^4	[-1.27; 1.25]	[-1.05; 1.04]	17.4%
a 0.4 Simple a	nom. sig. — Composite anom. sig.	Simple anom. sig. — Co	mposite anom. sig.
×	15=13 TeV, 140 fb	E 0.8 vs=13	TeV, 140 fb ⁻¹
υ ^ω Ζ(νν)γ		Jane ZZ(IIVV) Improver	nent: 68.5%
0.2		0.4	
0.1		0.2	
• · · ·		0	
Imp	provement: 22.3%	-02	
-0.2		-0.4	
-0.3		-0.6	
-0.6 -0.4	-0.2 0 0.2 0.4 0.6 C _{au} /A ⁴ [TeV ⁻⁴]	-0.2 -0.15 -0.1 -0.05 0 0.0	5 0.1 0.15 0.2 C. / A ⁴ ITeV ⁻⁴ 1

Operators basis: <u>1308.6323</u> and <u>2008.04298</u> Simulation: Madgraph5+Pythia8+Delphes3 Conditions: ATLAS Run II Considered channels: Z(vv)y and ZZ(IIvv) Selection is based on papers <u>1810.04995</u> and <u>1905.07163</u> Total flat systematic of 10% is applied Limits from ZZ(IIvv) are corrected using W(Iv)y background Limits from ZZ(IIvv) are corrected using WZ(IvIII) background

In ZZ case impact on other backgrounds was also considered. Background Z(ee/µµ)+jets provides additional improvement of 3-13%.

Artur Semushin (NRNU MEPhI, AANL (YerPhI))

Unitarization of the limits

In order to make the limits unitarized, the clipping method was used in aQGC interpretation of $Z(\nu\bar{\nu})\gamma jj$ analysis. It is based on setting the anomalous contributions to zero if $\sqrt{\hat{s}} > E_c$.

Unitarity bounds are calculated analytically (2004.05174) basing on partial wave unitarity conditions for VBS $V_1V_2 \rightarrow V_3V_4$.

As a result, for some E_c the limits become unitarized.

For nTGC it is possible to make the same unitarization. Unitarity bounds are calculated for process $f\bar{f} \rightarrow Z\gamma$ in 2308.16887.

Example: $|C_{G+}/\Lambda^4| < \frac{24\sqrt{2}\pi}{s^2} (= 0.004 \text{ for } \sqrt{s} = 13 \text{ TeV})$ Current sensitivity: $|C_{G+}/\Lambda^4| < 0.01$

